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Passive Recovery of Scene Geometry
for an Unmanned Ground Vehicle

I. Introduction

SRI performed this project as a member of ARPA’s Unmanned Ground Vehicle
(UGV) team of co-contractors. Martin Marietta Corporation of Denver, Colorado,
was the integrating contractor and SRI was one of 40 or more co-contractors providing
technology to Martin Marietta for inclusion on its vehicles.

SRItook an activerole in the “tiger team” that designed the initial architecture for
the vehicle sensing and control systems. Throughout the project, we worked closely
with researchers from the Jet Propulsion Laboratory (JPL) and Teleos, Inc. These
three groups formed the “stereo team” or “navigation sensing team,” which designed,
developed, evaluated, and delivered a series of stereo ranging systems to Martin Ma-
rietta for inclusion in its integrated demonstrations and technology demonstrations.

Stereo analysis is a critical technology for the UGV because it provides a passive
way of measuring distances to objects in front of the vehicle. A dense array of these
distances forms the raw data from which navigable paths and obstacles can be located.
The military is particularly interested in passive ranging techniques because they do
not involve the projection, onto the scene, of electromagnetic energy that might be
detected by an enemy.

Stereo analysis, when applied to infrared data, can provide passive ranging for
night operations. This extension is crucial because the military operates 24 hours a
day.

During the project, SRI concentrated on the following four areas:

Stereo Evaluation — We performed an in-depth evaluation of three representative
stereo techniques by analyzing their results on 45 stereo pairs.

Scene Sketch — We developed a high-level representation of an outdoor scene,
which we call a “scene sketch,” that can describe the semantic, as well as geo-
metric, properties of a three-dimensional scene.

Spatiotemporal Filtering — We developed a technique for increasing the resolu-
tion and robustness of passive range sensors by integrating stereo and motion
analysis.

Forward-Looking Infrared (FLIR) Stereo — We took the first steps toward demon-
strating the effectiveness of stereo analysis applied to infrared data, which can
support night operations.




In this report we describe our progress in these areas and briefly outline our plans for
the future.

II. Stereo Evaluation

Stereo analysis, which for a long time had been viewed as a technique that was
interesting, but too costly to be practical, has recently emerged as a viable tool for
realtime applications, such as vehicle navigation. This has happened for two reasons.
First, advances in hardware have made it practical to compute stereo matches in
real time. And second, advances in algorithm development have made it possible to
correctly match large portions of outdoor scenes.

Our first task in this project was to perform a qualitative evaluation of current
stereo techniques to see if they were capable of providing sufficient range information
to support outdoor vehicle navigation. Our goals for this evaluation were (1) to make
an initial estimate of the effectiveness of current stereo techniques applied to UGV
tasks, (2) to identify key problems for future research, and (3) to debug the evaluation
process.

For the evaluation, we decided to examine the effectiveness of a small number
of techniques applied to a large number of examples. Since we did not have the
resources to perform a complete analysis of all techniques, we felt that it would be
more instructive to examine a few techniques thoroughly than to evaluate many of
them.

One of the guidelines we adopted for this evaluation was to develop and main-
tain an atmosphere of cooperation and constructive criticism among the researchers
participating in it. Without this, we would not be able to focus on our ultimate
goal of producing a sequence of increasingly capable stereo systems. To help estab-
lish a cooperative atmosphere, we decided to concentrate on the positive aspects of
each technique and emphasize potential extensions, realizing that existing techniques
were developed for different domains and different applications. We also decided to
share all the raw results with the participants so they could duplicate our analysis or
develop their own.

For the evaluation, SRI collected imagery from five groups, JPL, INRIA (in
France), SRI, Carnegie Mellon University (CMU), and Teleos (hence the name “JISCT”
for the first evaluation phase); selected 49 image pairs for analysis; converted them
into a standard format; distributed the data set to the five groups for processing,
along with an extensive set of instructions; collected the results; characterized them;
and finally distributed the results and the associated report to the participants.

We intentionally asked each group to process a large number of pairs (10 training
pairs and 45 test pairs ... 6 pairs were in both the training and test sets), because we



wanted to force each group to establish a standard algorithm that was automatically
applied. As a result of this approach, there are now three or four groups around
the world that can readily apply end-to-end stereo techniques to new data and com-
pa,re'their results. In the future, we hope to expand this community to 10 or more
groups. This process has opened up a new form of interaction within the computer.
vision community that we feel will help stimulate advances and reduce redundant
development.

In the instructions to the participants, we asked each group to produce several
results for each match point in addition to its computed disparity. For each point,
we asked for an x and a y disparity, an estimate of the precision associated with each
reported disparity, an estimate of the confidence associated with each match, and an
annotation for each unmatched point, indicating why the technique could not find a
match. Possible explanations for a no match included, “area too bland,” “multiple
choices,” and “inconsistent with neighbors.” Although none of the groups produced
all this additional information (they all produced some of it), we felt that it was
important to begin the process with the goal of producing this auxiliary information,
which will be invaluable for the higher-level routines using the stereo results. We
foresee a time in the not-too-distant future when the calling routine will use the
precisions, confidences, and annotations to actively control the sensor parameters for
the next data acquisition step. For example, if the current stereo results contain a
large region with no disparities and the image regions are quite dark, the controlling
routine could open the irises or increase the integration time to reexamine these dark
regions.

To assist in the analysis of the results, SRI developed two sets of routines, one
to gather statistics and one to display the disparities in a variety of ways. Since
we did not have ground truth for the distributed imagery, we could not compare the
computed disparities with objective values. However, we were able to gather statistics
on two of the three types of mistakes in which we were interested by outlining selected
regions in the imagery and counting the occurrence of results/no-results within these
regions. We made a distinction between the following three types of mistakes:

1. False Negatives: No disparities computed for points that should have results.

2. False Positives in Unmatchable Regions:  Disparities reported for points that
don’t have matches in the second image, for example, points occluded in one
image or points out of the field of view of one of the images.

3. False Positives in Matchable Regions: Incorrect disparities reported for matchable
points.

By interactively outlining regions of occluded points, regions of points out of the field
of view of the second image, and regions of points in the sky, we were able to directly
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measure statistics for the first two types of mistakes. In addition, we outlined regions
corresponding to expected problems, such as dark shadows, foliage, and bland areas.
In this way we could gather statistics on the behavior of the algorithms on these
special problems.

The results of the first-phase evaluation can be summarized as follows:

o We were surprised by the completeness of the results. Even though the data set
contained a wide range of imagery, including some sequences designed to stretch
the analysis along specific dimensions, such as noise tolerance and disparity
range, the stereo systems computed disparities for 64 percent of the matchable
points. On eight image pairs selected to be the most appropriate for UGV
applications, the techniques computed disparities for as much as 87 percent of
the points. Although the missing points (and mistakes in the reported matches)
could cause problems for vehicle navigation, this level of completeness is an
indication that there is a solid basis for building a passive ranging system for
an outdoor vehicle.

e For the UGV-related imagery the number of gross errors was relatively small,
ranging from a few “spike” errors to small regions of mistakes. We estimate
that these results contained gross errors of somewhere between 1 and 5 percent.
Many of these errors would have to be eliminated for the data to be used directly
for planning navigable routes.

e The stereo systems made different mistakes, most of which could be explained
by their correlation patch size, search technique, or match verification technique.
However, since they made different mistakes, there is a possibility of combining
them in a way to check each other and fill in missing data.

¢ All the stereo systems could be improved significantly with a relatively small
amount of effort. This was the first test of this type, requiring the analysis
of a large data set, and it uncovered some weaknesses in the different stereo
systems that can be corrected. One area to be considered is the development of
pre-analysis techniques to automatically set key parameters, such as patch size
and search areas (as Teleos did). The filtering of results could also be improved,
eliminating matches that differ significantly from their neighbors (as SRI did).

o There were a few surprises, such as Teleos’s successful solution to one set of
image pairs from CMU that includes a carpet with a repetitive pattern on it.
Teleos’s large patches were able to detect large regions of subtle differences,
which allowed recovery of the correct disparities.

Additional information about the JISCT evaluation and its results can be found in
Appendix A [3].



III. Scene Sketch

The primary purpose of the UGV’s sensor system is to generate three-dimensional
structural descriptions of outdoor scenes to support vehicle navigation. Ideally, these
descriptions would contain geometric information that describes the location, size,
and shape of objects and semantic information that specifies the material types and
semantic categories of key objects. In addition, this process should be a dynamic
one that continuously updates its scene description. In practice, however, current
scene -modeling techniques typically concentrate on geometric recovery and analyze
each snapshot of a scene independently. This approach has two major limitations.
First, the navigation system cannot use semantic information to plan its paths. For
example, since it cannot distinguish between a rock and a bush, it has to plan a
path around all detected “bumps.” On the other hand, such a system would be quite

- happy to plan a path across a lake because it is flat! Second, this snap-shot-based

system cannot use the results of previous analyses to focus its current processing on
key areas, since it’s required to build a complete map from each snapshot.

In this project, we developed initial techniques that overcome both of these limi-
tations. We developed techniques for semantically labeling scene elements and tech- -
niques for incrementally refining descriptions over time. For semantic labeling, we are
developing a set of specialists, each capable of identifying one class of objects, and
an integrated framework for combining these results into a single sketch of the scene.
Our specialists include a technique for identifying vegetation; one for locating ridges;
and one for identifying the horizon. We call the integrated model a sketch because it
is not designed to be a precise, unique partitioning of the scene into labeled objects.
Rather it is a qualitative description of the key items in the scene that are important
for navigation. Figure 1 shows an example of this type of sketch.

We expect a sketch to include such information as

Unmapped Areas: Regions of points that have not been reliably measured will be
assigned labels indicating the reasons for their failures. Possible reasons include
the following: '

o They are out of the field of view of one of the cameras.

e They are occluded by another object in the scene.

e The matcher was unable to find consistent matches for them.

o The matcher found consistent matches for individual points, but the pat-

tern of matches indicates a problem in the region.

Material Types: Regions will be assigned material types, such as dirt, vegetation,
water, and sky, depending on their spectral distribution, texture, and shape.
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Figure 1: Local semantic scene sketch.

Semantic Labels: Recognized objects will be given labels, such as rock, bush, or
road.

Higher-Level Geometric Descriptions: Key primitives, such as ridge lines, will be
explicitly labeled.

We have developed an initial set of techniques to detect and classify some of these
categories, including sky, vegetation, ridges, and problem areas. In the future, we
plan to implement additional specialists and integrate them into our TraX System
[2], which provides a method for constructing and transforming two-dimensional and
three-dimensional representations over time. .

IV. Spatiotemporal Filtering

One problem with current correlation-based stereo systems is that they apply
smoothing or spatial aggregation operations that reduce the spatial and depth res-
olutions of their results. They use these operations to minimize matching mistakes,
but they also have the side effect of reducing the resolution, which in turn increases
the size of the smallest detectable obstacles.




To avoid this loss of resolution, we have developed an alternative technique for
eliminating mistakes. Our approach filters out mistakes by checking the consistencies
of multiple in(ter)dependent matches. The idea behind this strategy is the same as
that behind the consistency checking techniques used in Hannah’s left-to-right and
right-to-left doublechecking [6], and INRIA’s trinocular filtering [1].

Figure 2 shows the basic approach. Each arrow represents an independent match
from one image to another. The system performs conventional stereo disparity es-
timation from left to right, and optical flow estimation from present to past. The
disparity estimates are corroborated by performing an additional right to left stereo
match and verifying that the left to right result is the inverse of the right to left
one (the “left-right check”), as in [6] and [5]. Optical flow estimates are similarly
corroborated by estimating the past to present flow field (the “forward-back check”).
If these checks fail, the matches are marked as invalid. In addition, since an optical
flow estimate is available for each pixel in both cameras, the spatiotemporal transi-
tivity of two stereo estimates and two optical flow estimates can be checked to ensure
that the four-sided “loop” of matches is consistent (the “spatiotemporal check”). If
the spatiotemporal check fails, the confidence in the individual matches is decreased.
Validity information is associated with what we term “pixel features,” instead of “pix-
els” or “features,” because the information is associated with individual pixels that
are tracked over time.

This spatiotemporal matching strategy provides a natural way of integrating local
depth images over time. As shown in Figure 3, our model of the scene is image-
centered. Fach pixel-feature has associated stereo disparity estimates, optical flow
estimates and auxiliary information describing the numbers and types of consistency
checks passed by the pixel-feature. An advantage of this type of scene modeling is
that it avoids the need to explicitly compute the six degree-of-freedom transforms that
relate one local three-dimensional model to another, as shown in Figure 4. Computing
these transforms can be tricky when, for example, there is motion in the scene, as well
as computationally expensive (e.g., see [7]). Our approach to integration differs from
most other approaches, however, in that it does not provide a persistent global model
of the scene. Rather it provides an image-centered model of the currently visible
surfaces of the scene objects. As objects leave the field of view, they are lost. The
information produced by our modeling system could be provided as data to a more
conventional global modeling system.

A more complete description of our spatiotemporal consistency checking technique
can be found in the reference in Appendix B [4].
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Figure 3: Image-centered modeling of the scene from a sequence of stereo pairs.
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Figure 4: Global map formation from a sequence of stereo pairs.
V. FLIR Stereo

In this project, we have taken the first steps toward demonstrating the effectiveness
of FLIR stereo for supporting night driving. We demonstrated that our conventional
stereo techniques work well when applied to FLIR data. We installed a pair of infrared
sensors on JPL’s HMMWYV vehicle and demonstrated real-time night ranging, and
we gathered a 24-hour time-lapse sequence of infrared images to verify that there is
sufficient contrast and texture throughout the day and night for stereo matching.

For our infrared experiments, we have used a pair of sensors, called Radiance I
Cameras, produced by AMBER Corporation of Goleta, California. They are indium-
antimonide sensors that measure radiation in the mid-IR range of 3 to 5 microns. The
sensing chips have a resolution of 256 by 256 pixels and produce 12-bit intensity values.
They provide analog output, which we have used primarily, and digital output, which
we have implemented interfaces for and are currently in the process of integrating
into our experimental system. '

The digital interfaces are important for several reasons. First, they provide the
purest form of data, because they avoid the corruption inherent in converting the
data to a video format, such as NTSC, before digitizing it. Second, they provide one
digital value per sensor element. Third, the digital interfaces provide 12-bit intensity
values versus the 8 or fewer bits per pixel typically available from digitized video
signals. Fourth, they provide a way to synchronize two of the sensors for stereo data
acquisition. Since the AMBER sensors cannot be GENLOCKed together (like most

9




conventional cameras), but can be started by a “start pulse,” we can synchronize a
pair by starting them together, and then reading the digital output. Since the digital
output encodes one value per element in the 256 by 256 sensor arrays, the relative
positions of the pixels within one array and from one array to another are fixed, as
long as the sensors are rigidly mounted relative to each other.

In the future, we plan to complete the integration of the digital interfaces into our
system, explore 12-bit correlation techniques, and then transfer the system to Martin
Marietta for night-time demonstrations on its vehicles.

VI. Summary

In this project, we have made significant progress in achieving our goal of advancing
the state of the art in passive scene modeling for UGV applications by

1. Participating on the tiger team that designed the sensing and control architec-
ture for the vehicle.

2. Evaluating the strengths and weaknesses of stereo analysis applied to UGV
tasks.

3. Identifying key areas for future research in stereo analysis and, more generally,
in computer vision to support vehicle navigation.

4. Developing a scene-sketching framework for describing the semantic, as well as
geometric, properties of a scene, which will significantly increase the information
provided to a navigation path planner.

5. Developing a technique for increasing the resolution and robustness of passive
range images by integrating stereo and motion analysis.

6. Developing FLIR stereo techniques to support night driving.

In the future, we plan to (1) develop additional specialists for detecting and
classifying key navigational features, such as rocks, bushes, and ravines, (2) continue
our development of FLIR techniques to support night driving, and (3) explore strate-
gies for employing multiple stereo systems to provide both the wide field of view
required to drive safely around obstacles and the high-resolution results required to
detect small, but dangerous, obstacles.
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The JISCT Stereo Evaluation*

Robert C. Bolles, H. Harlyn Baker, and Marsha Jo Hannah

Artificial Intelligence Center, SRI International
333 Ravenswood Ave., Menlo Park, CA 94025
(bolles@ai.sri.com baker@ai.sri.com hannah@ai.sri.com)

Abstract

The results of the “JISCT™ Stereo Evaluation (named
after the five groups contributing imagery: JPL, INRIA
(in France), SRI, CMU, and Teleos) are presented. The
goals of this evaluation, which was the first phase of a
multiphase evaluation process, were (1) to get an initial
estimate of the effectiveness of current stereo techniques
applied to Unmanned Ground Vehicle (UGV) tasks, (2)
to identify key problems for future research, and (3) to
debug the evaluation process so that it can be repeated
with a larger group of participants. SRI collected 49

_pairs of images, distributed them to the five participants,

and received complete results from three groups — IN-
RIA, SRI, and Teleos. SRI compared the results by in-
teractively analyzing them and automatically gathering
statistics.

We were surprised by the completeness of everyone’s
results. On the eight image pairs that we thought were
the most representative of UGV tasks, the techniques
computed disparities for as much as 87% of the points
with only a few “spike” errors and some scattered regions
of points without matches. Although the missing points
(and mistakes in the reported matches) could cause prob-
lems for vehicle navigation, this level of completeness is
an indication that there is a solid basis for building a
passive ranging system for an outdoor vehicle. On the
other hand, none of these techniques have “solved the
stereo problem” — we selected a number of important
areas for future research, including filtering out gross er-
rors and handling the wide dynamic range of intensities
common in outdoor imagery.

1 Introduction

Stereo analysis, which for a long time had been
viewed as an interesting, but too-costly-to-be-practical
technique, has emerged as a viable tool for realtime ap-
plications such as vehicle navigation. This has happened

*Supported by Advanced Research Projects Agency Contract
DACAT76-92-C-0003.

for two reasons. First, advances in hardware have made
1t practical to compute stereo matches “in real time.”
And second, advances in algorithm development have
made it possible to correctly match large portions of out-
door scenes.

An important next step in the development and use of
practical stereo systems is the characterization of their
capabilities. Potential users, such as system integrators
and automatic task planner$, need to know their compu-
tational requirements, their speeds, their precision, their
mistakes, and so forth, in order to model their behav-
ior and reason about their use. With this in mind, SRI,
JPL, and Teleos began a multiphase evaluation process
last year within the Unmanned Ground Vehicle (CGV)
Project. The first phase of that evaluation has been
completed, and the second phase has begun. This paper
describes the results of the first phase.

The overall plan for our complete evaluation process is
to pursue a three-pronged approach, including analytic
models, qualitative “hehavioral” models, and statistical
performance models. The analytic models would be used
to estimate such things as the expected depth precision
computable with a specific camera configuration. The
qualitative models would be used to identify key prob-
lems for future research, for example, detection of holes,
analysis of shadowed regions, and measurement of bland
areas. The statistical models would be used to produce
quantitative estimates of such key factors as the smallest
obstacle detectable at a specified distance. SRI has taken
the lead in the qualitative evaluation; JPL has taken the
lead in the quantitative analysis.

For the qualitative analysis, we decided to start by ex-
amining a sinall number of techniques in order to debug
the process, and then expand the evaluation to include’
a much larger set of participants. The goals of the first
phase were to get an initial estimate of the effectiveness
of current stereo tecliniques applied to UGV tasks and,
from this, to identify key problems for future research.

One of the high-level guidelines we adopted was to de-
velop and maintain an atmosphere of cooperation and

. constructive criticism among the researchers participat-

ing in the evaluation. Without this we would not be
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able to focus on our ultimate goal of producing a se-
quence of increasingly capable sterco systems. To help
establish a cooperative atmosphere, we decided to con-
centrate on the positive aspects of each algorithm and
highlight ways to strengthen existing techniques, realiz-
ing that they were developed for different domains and
different applications. We also decided to share all the
raw results with the participants so they could duplicate
our analysis or develop their own.

For the first phase of the qualitative evalnation,
SRI collected imagery from five groups. JPL. INRIA
(m France). SRI, CMU, and Teleos (hence the name
“JISCT™ for the first evaluation phase): selected 49 pairs
for analysis: converted them into a standard format; dis-
tributed the dataset to the five groups for processing,
along with an extensive set of instructions: collected the
results; characterized them; and finally distributed the
results and the associated report to the participants.

We intentionally asked each group to process a large
number of pairs (10 training pairs and 45 “test” pairs
... 6 pairs were in both the training and test sets; we
made an administrative mistake on one of the test pairs,
reducing the total to 44), because we wanted to force
them to establish a standard algorithm that was auto-
matically applied. As a result of this, there are now four
groups around the world that can readily apply end-to-
end stereo techniques to new data and compare their
results. As part of the second phase we hope to expand
this community to 10 or more groups. This process is
opening up a new form of interaction within the com-
puter vision community that we feel will help stimulate
advances and reduce redundant development.

In the instructions to the participants, we asked each
group to produce several results for each matched point
in addition to its computed disparity. For each point
we asked for an x and a y disparity, an estimate of the
precision associated with each reported disparity, an es-
timate of the confidence associated with each match, and
an annotation for each unmatched point, indicating why
the technique could not find a match. Possible explana-
tions for no match included “area too bland,” “multiple
choices,” and “inconsistent with neighbors.” Although
none of the groups produced all this additional informa-
tion (they all produced some of it), we felt that it was
important to begin the process with the goal of produc-
ing this auxiliary information, which will be invaluable
for the higher-level routines using the stereo results. We
foresee a time in the not too distant future when the
calling routine will use the precisions, confidences, and
annotations to actively control the sensor parameters for
the next data acquisition step. For example, if the cur-
rent stereo results contain a large region of points with-
out disparities and the image region is quite dark, the
controlling routine could open the irises or increase the
integration time to reexamine these dark regions.

Four groups returned results and write-ups to SRI —

Teleos, SRI. and two from INRIA. One of the INRIA
sets was from a lechnique that locates linear features
and then matches these features. Since this technique
reports only disparities along the matched edges. it was
not possible to directly compare its results to the oth-
ers. Therefore, we concentrated our analysis on the three
correlation-based algorithms.

Each participating group analyvzed its own results. In
addition. Harlyn Baker and Marsha Jo Hannah of SRI
analyzed the results from all the groups on all 44 pairs
and wrote short reviews of them. In the full report
[Bolles, Baker. & Hannah)], their comments are included
as appendices. These comments. plus the automatically
compiled statistics, form the core of this evaluation.

Initially, we were a little reluctant to compute and
publish statistics that may be taken out of context. On
the other hand, statistics, if reported with sufficient
caveats, can provide a convenient basis for comparing
techniques. In this paper, we summarize the qualitative
results and quantitative statistics. The validities of both
are limited by the dataset, which implicitly defines the
range of data for which the conclusions directly apply,
and by thie analyzers, who naturally focused on issues
they were most interested in.

This paper is organized as follows. In Section 2, we
briefly describe the key strategies and parameters of the
three principal techniques, highlighting their similarities
and differences. In Section 3. we describe our experi-
mental procedure. In Section 4, we present the auto-
matically gathered statistics. which we refer to as the
believe-everything-they-tell-you statistics because they
are based on the number of “reported” disparities in
specified regions of the test data, not on the number

. of “correct” disparities. In Section 5, we summarize our

qualitative analysis and briefly discuss open issues for fu-
ture research. In Section 6, we conclude with an evalua-
tion of the JISCT evaluation and make some suggestions
for the next step in the evaluation process.

2 Technique Summaries

We evaluated three techniques. whose key aspects are
highlighted below.

2.1 INRIA

This technique was originally implemented as part of
a European space project to produce three-dimensional
models of scenes containing rocks and sand. It is im-
plemented in C on a Sun. A similar technique is im-
plemented on a Connection Machine (by Pascal Fua) at
SRI. Key aspects are

o The algorithm computes a disparity for every pixel

in an image by matching patches (usually 11x11 pix-
els) at one or two image resolutions, independently.
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The basic algorithm “INRIA-1" matches only at one
resolution.

¢ The technique uses an approximation to normalized
correlation, referred to as C5, because it can be im-
plemented efficiently using a sliding computation of
the basic sums.

e The algorithm searches only along epipolar lines,
which are assumed to be horizontal.

e The algorithm expects a range of disparities to be
specified for each image pair to be analyzed.

e The technique verifies all matches by independently
matching patches from the left image in the right
image and patches from the right image in the left
image. If the match for a patch from the left image is
not mapped back to within a pixel of its location in
the left image, the point is not assigned a disparity.

e The technique computes a subpixel location for each
match by fitting a second-order curve to the corre-
lation values surrounding the best match.

o After computing disparities for as many pixels in
the left image as possible, the algorithm filters out
isolated matches by morphologically shrinking the
regions of matches. It typically shrinks the regions
three times, grows the result three times, and then
AND:s this result with the original image of results.
This process can erase regions as large as 6x6 pixels.

o The algorithm computes a confidence value for each
disparity by differencing the heights of the two high-
est matching peaks.

e The technique estimates the precision of a disparity
value by fitting a Gaussian to the matching peak,
using its standard deviation as the precision mea-
sure.

e The technique does not attempt matches near the
edges of an image.

o The second set of results providedfor this evaluation
often was produced by matching at two image reso-
lutions and picking the highest resolution for which
there was a valid match.

2.2 SRI

This stereo system has evolved over 20 years, begin-
ning with early Martian Rover research, migrating into
the aerial mapping domain, and now coming back to
ground-level analysis. Its goal has been to produce a
set of high-quality matches from a wide range of (pos-
sibly uncalibrated) imagery. The algorithm is a multi-
stage process that uses one matching technique to get a
few solid matches at high-information points, and then

uses these matches to guide another matching technique,
whose results become anchors for yet another technique,
etc, with culling of mistakes occurring at many levels.
At each stage, the algorithm acquires more supporting
matches to suggest limits for the disparity search, so the
algorithm can attempt to match points that have less
“interesting” information, using less hierarchy. For this
evaluation, code was added to produce “dense” matches;
this included stages that grow regions of matches around
previously matched points, and fill in a regular grid of
matches. In total, the standard algorithm for this evalu-
ation involved seven stages of matching and three filter-
ing steps. The algorithm is implemented in C on a Sun;
speed has not been a priority.
Some key aspects are

e The algorithm applies a version of hierarchical
matching for each point that it analyzes. At the
early stages of the process, it uses all available im-
age resolutions, starting at the coarsest, using the
match found at that level to predict the location of
the match at the next finer level, then refining it,
and so forth. At the final stage, where the dense
grid of points is computed, the algorithm uses only
one or two levels.

o At each image resolution (level), the algorithm does
a two-dimensional search near the epipolar line and
then hill-climbs around the best match. The epipo-
lar lines can be at any angle in the second image,
and if there is no camera model (due to bad matches
at early stages, or because the camera isn’t mode-
lable by a pinhole camera), the algorithms search
over areas—(dx,dy) boxes—defined by surrounding
matches.

o The algorithm uses normalized cross correlation
(correcting for a linear intensity change from im-
age to image) on 11x11 patches typically. Later
stages, such as the region-growing step, can use
smaller patches. The final match includes a sub-
pixel estimate of the disparity, computed by fitting
two parabolas to the nearby correlation values.

" o Each match from one image to another is verified
by applying the same technique to match back into
the original image. If the return match is not within
a pixel of the original point, the match is discarded
as unreliable.

o The algorithm applies several other “filters” to
weed out mistakes, including a threshold on interest
value, thresholds on relative and absolute correla-
tion values, tests for matches outside an image, and
tests for unusual disparity values within a region of
the image.

o Later stages of the algorithm use previously com-
puted disparities in the neighborhood of a new point
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to be matched, to specify the range of disparities
to be considered. The neighborhoods are typically
large, beginning at 1/4th of the image area. and
gradually reducing to 1/64th of the image for this
experiment. This technique assumes that the scene
is composed of relatively large continuous surfaces.

e Since a confidence for each match was requested for
this experiment, one was supplied by computing the
ratio of the correlation value to the autocorrelation
threshold.

2.3 TELEOS

This technique has been designed for efficient imple-
mentation and recently has been geared toward active
vision in which the basic stereo process matches 100 to
200 selected points in a 1/30th of a second. It is im-
plemented on a combination of two special boards and
a Datacube system. For this evaluation. however, the
hardware was not available and so a Lisp version of the
algorithm (running on a Lisp Machine) was used. Some
key aspects are

o The algorithm uses large correlation windows (rang-
ing from 24x24 to 96x96 pixels).

e The algorithm computes binary correlation values
from the Laplacian of Gaussian of the original im-
ages.

e The algorithm analyzes the data only at one reso-
lution. It automatically selects the size of the con-
volution operators by analyzing the peak shapes of
matches at 25 points in each new image pair. It se-
lects the smallest window size that produces a sig-
nificant difference between the heights of the top
two highest peaks.

e At each point in the image, the algorithm starts
with the disparity computed for the neighboring
pixel and tries to locate a match at a similar dis-
parity. ‘A serpentine search, which analyzes the first
row from left to right, the second row from right
to left, and so forth, is used in order to reduce the
computation time on the Lisp Machine.

e The algorithm searches off the epipolar line for the
best. match.

e The algorithm also examines the effect of skewing
the patch being matched. It analyzes skews ranging
from -.5 pixels per line to +.5 pixels per line. This
analysis is applied only at the end of the search when
the best match has been selected.

e The algorithm estimates a subpixel disparity value
by fitting a quadratic function to the best peak.

e The algorithm does not try to match points near
the edges of an image.

3 Experimental Procedure

The goal of this initial evaluation was to produce a
qualitative characterization of the capabilities of current
stereo techniques applied to UGV tasks. The intent, as
stated in the instructions distributed to each participant,
was to produce a description such as the following:

On the 44 image pairs in the database
our techniques correctly measured disparities
to 65% of the points on the ground and 40% of
the points on obstacles. such as trees, bushes,
and rocks. The top five problems for our tech-
niques were dynamic range. holes, bland areas,
repeated structure, and poor range resolution.
We estimate that these problems occur in the
UGV scenarios with frequencies of ...

The idea was to produce a characterization that would
focus future work on key UGV problems.

Our basic approach to developing this type of charac-
terization was to apply the techniques to a large dataset,
visually display the results in ways to highlight unusual
events, gather basic statistics, and where possible, sum-
marize our observations in descriptions that link ob-
served behaviors to aspects of the techniques.

To start the process, SRI compiled a database of 49
image pairs from JPL, INRIA, SRI, CMU, and Teleos.
We converted the images into a standard format and
then distributed them to the five contributing groups for
analysis. The groups were instructed to use 10 pairs asa
training set, “freeze” their algorithm, and then process
the whole set of 45 pairs. Results and commentary from
four stereo systems were returned to SRI — Teleos, SRI,
and two from INRIA. One of the INRIA sets, using edge-
based feature analysis, could not easily be compared with
the others. We concentrated our analysis on the three
correlation-based system results.

To assist in the analysis of the results, SRI developed
two sets of routines, one to gather statistics and one to
display the disparities in a variety of ways. Since we
did not have ground truth for the distributed imagery,
we were not able to compare the computed disparities
with objective values. However, we were able to gather
statistics on two of the three types of mistakes that we
are interested in by outlining special regions in the im-
agery and counting the occurrence of results within these
regions.

We made a distinction between the following three
types of mistakes:

False Negatives: No disparities computed for points
that should have results.

False Positives in Unmatchable Regions: Disparities
reported for points that don’t have matches in the
second image, for example, points occluded in one
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lmage or points out of the field of view of one of the
lmages.

False Positives in Matchable Regions: Incorrect dis-
parities reported for matchable points.

By interactively outlining regions of occluded points,
regions of points out of the field of view of the second
image, and regions of points in the sky, we were able
to directly measure statistics for the first two types of
mistakes. In addition, we outlined regions corresponding
to expected problems, such as dark shadows, foliage, and
bland areas. In this way we could gather statistics on the
behavior of the algorithms on these special problems.

As part of the initial instructions we asked each group
to extend its algorithm to produce an image of annota-
tions that summarizes the result of the analysis, pixel
by pixel. At each pixel we asked for a code from the
following list:

0: no match attempted
matched fine

[ure

NO MATCH BECAUSE
too bland, no information to key on
low match value (e.g., correlation value)
multiple choices (ie, repeated structure)
back-match inconsistency
point out of camera’s field of view
point occluded by an object in the scene
point too far off the epipolar line
point inconsistent with neighbors
other

W 00 ~N O O WN

-
o

The reason for requesting these codes is to encourage
future algorithms to provide this additional information,
which can be used by the higher-level vision techniques
to decide what should be done next. For example, if no
results are reported for a region directly ahead of the
vehicle and the region is too bland and very dark, one
option might be to open the irises on the cameras {or
increase the integration time) in order to see into the
dark area.

INRIA reported codes of 1 and 10; SRI reported all
codes except for 4 and 7; and Teleos reported codes of 0,
1, 2, and 3. Therefore, we were able to count the number
of matches attempted in each region and the number of
disparities reported.

To estimate the frequency of incorrectly reported dis-
parities (the third type of mistake), we either compared
them to interactively selected values or located an aber-
ration in the local pattern of disparities when they were
displayed on the screen. We experimented with a variety
of display techniques, including displaying the dispari-
ties as color-coded dots in stereo, heights above a three-
dimensional “ground” plane, and disparity-displaced
vertical lines. We are continuing to look for better ways

to display three-dimensional results, because most cur-
rent techniques encourage the human eye to “smooth
over” differences, making the results look better than
they actually are.

4 Statistics Summary

The statistics that we refer to as believe-everything-
they-tell-you statistics are based on the number of re-
ported disparities in specified regions of the test data.
These statistics do not distinguish between “correct” and
“Incorrect” disparity values, just reported values and un-
reported values. They do, however, provide enough in-
formation to estimate three important quantities, the
number of false negatives (matchable points that were
not assigned a disparity), the number of false positives
occurring in unmatchable regions, and the number of
matchable pixels that were assigned disparities.

To help focus attention of key areas of the test data,
we interactively outlined regions in the left images of
20 of the 44 image pairs (see Figure 1 and Figure 2).
One of the most important regions is what we called
“matchable-data.” It eliminates several types of points
that do not have matches in the right image. including
null bands that do not contain grayscale data (but are
included in the images to fill them out to a standard size,
such as 512 by 512 pixels) and pixels that are out of the
field of view of the right camera. In the 20 images we
examined, the percentage of unmatchable points ranged
from 4.3% to 46.0% and averaged 12.3%.

The statistics were gathered by a program that
counted the number of disparities (dx disparities) re-
ported in the specified region (or the whole image, if
that was appropriate). ,

Figure 3 shows the results on all 44 image pairs. Note
that

e The dataset contains a wide variety of i1magery;
some of it is realistic (containing dirt roads and
cross-country scenes) and some is designed to test
the algorithms along one dimension, such as base-
line and noise tolerance. Some of the imagery is
even trick imagery (the shoe images from CMU).

e The numbers in parentheses after each group’s name
(along the top of the table) indicate the number of
test pairs in the dataset from that group.

e The INRIA-2 results are in parentheses because dif-
ferent parameter settings were used for different im-
age pairs. However, the usual change was for the
technique to match at two spatial resolutions in-
stead of just one, and then combine the results. If a
second set of parameters was not tried for a pair, we
left the entry blank and used the INRIA-1 results
in our computation of INRIA-2’s average.
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Figure 1: Interactively outlined, special-interest regions for the J1 image pair from INRIA.

o If we did not outline a “matchable-data” region for a
pair, we used the full-image statistics in our compu-
tations. This reduces the effectiveness totals some-
what (possibly by as much as 7%).

Glven the diversity of the data. we were pleased with the
completeness of the results.

In order to examine the behavior of the techniques on
typical UGV imagery, we selected the eight images from
the dataset that were the most appropriate for UGV
tasks and collected statistics on that subset. Figure 4
shows the results on these data. The INRIA-2, SRI-2,
and Teleos-1 techniques performed well, computing dis-
parities for 86 or 87% of the matchable points. Note,
however, that these images did not contain difficult ob-
stacles, such as holes, ditches, and small rocks—the ob-
stacles were large rocks, bushes, and trees.

Figure 5 shows the results on the 17 large obstacles
in the dataset. The techniques did an excellent job of
detecting these objects, which stick up above the ground
— they only had a little trouble in shadowed regions on
them.

With respect to shadows, the techniques had a signif-
icantly harder time computing disparities for points in
shadowed regions than in sun-lit regions. Figure 6 shows
the results for points in shadows.

The techniques also had trouble with bland regions,
as expected. Figure 7 shows the results on these areas.
The techniques typically computed results around the
edges of the regions — the larger the correlation win-
dows, the more points were computed. because correla-
tion windows naturally extend matches into the interior
of bland regions by about half their diameter.

There are several potentially important problem areas
that were not covered in this initial dataset, including
holes, sand, small- to medium-sized rocks and bushes,
reflective surfaces (water or windows), and moving ob-
Jects. One of our goals for the second phase of this eval-
uation is to include examples of these problems.

5 Qualitative Analysis

We were surprised by the completeness of evervone’s
results. Even though the dataset contained a wide range
of imagery, including some sequences designed to stretch
the analysis along specific dimensions, such as noise tol-
erance and disparity range. the techniques computed dis-
parities for 64% of the matchable points. On the eight
Image pairs that we selected as the most appropriate for
UGV applications, the techniques computed disparities
for as much as 87% of the points. Although the miss-
ing points (and mistakes in the reported matches) could
cause problems for vehicle navigation, this level of com-
pleteness is an indication that there is a solid basis for
building a passive ranging system for an outdoor vehicle.

The number of gross errors varied considerably from
1mage pair to image pair. Formost “realistic” images the
number was relatively small, ranging from a few “spike”
errors to small regions of mistakes. We estimate that for
these images there were between 1 and 5% gross errorsin
the results. In many cases. the worst errors cluster into
areas that are “breaking up” for one reason or another
(usually poor information plus a poor “guess™ for the
disparity range); if we can “fix” these areas, then the
remaining “spike” errors should be amenable to culling
techniques. In any case, most of these errors would have
to be eliminated in order for the data to be used directly
for planning navigable routes.

The techniques made different mistakes, most of which
could be explained by their correlation patch size, search
technique, or match verification technique. However,
since they made different mistakes, there is a possibil-
1ty of combining them in a way to check each other and
fill in missing data.

All the techniques could be improved significantly with
a relatively small amount of effort. This was the first test
of this type, requiring the analysis of a large dataset, and
it uncovered some weaknesses that can be corrected. One
area to be considered is the development of preanalysis
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Figure 2: Special-interest regions for the STANFORD image pair from SRL
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Weighted
JPL(5)  INRIA(8) SRI(15) CMU(9) Teleos(7) Average

INRIA-1 | 63 66 42 89 35 I 57
(INRIA-2)1(92) (75) (60) (70) (50) | (67)
SRI-2 : 94 74 61 64 39 : 64
Teleos-1 : 95 81 45 87 77 : 71
average | 86 T o " e

Figure 3: Percentage of “matchable” pixels assigned disparities on all 44 image pairs.

Arroyo EPI16 HMMWV1I HMMWV2 J1 Road Rock StanDbl Average
DRIl s s &7 79 72 a0 3 a1 1 ez
(INRIA-2) | (85)  (95) (95) (90) (88) (76) I (86)
|
SRI-2 ; 91 72 94 94 73 97 94 78 | 87
’ |
Teleos-1 : 98 72 93 91 74 - 98 95 72 l 87
aersge | 53 68 85 88 73 78 715 66 | 718

Figure 4: Percentage of “matchable” pixels assigned disparities on the eight most representative pairs.
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Arroyo HMMWV1 HMMWV 2 Rock
Bushl Bush2 Rock LMound Rock RMound Rock Etc LBush RBush Rock

Pixels: 56 68 10 130 18 106 26 839 174 105 23
INRIA-1 | 95 88 100 98 100 88 100 96 67 30 57
(INRIA-2) | (100) (100) (100) (100) (98) (74) (74)(100)
|
SRI-2 | 91 - 82 90 99 94 96 96 95 68 64 96
I
Teleos-1 | 90 100 90 88 100 97 88 94 74 72 57
Average | 92 90 93 95 98 94 95 95 70 55 70
J1 StanDbl Ball2 Unweighted
RRock FRock LRock 1Tree 243T Tennis-Ball Average
Pixels: 70 70 98 276 37 145
INRIA-1 | 100 100 100 63 86 92 I 85
(INRIA-2) | (92) (100) (94) I (95)
| |
SRI-2 | 100 99 99 50 76 90 I 87
l l
Teleos-1 | 98 89 100 94 62 86 I 87
Average | 99 96 100 69 75 89 l 86

Figure 5: Percentage of “matchable” pixels on large obstacles assigned disparities.

Stanford StanDbl Unweighted
Shadow 1stTree Shadow 1stTree Average
Pixels: 215 140 448 276
INRIA-1 | 40 71 38 63 | 53
(INRIA-2)]  (84) (96) (73) (92) | (86)
| I
SRI-2 | 59 61 65 50 | 59
| I
Teleos-1 | 1 82 29 94 | 52
Average | 33 71 44 69 | 55

Figure 6: Percentage of “matchable” pixels in shadows assigned disparities.
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1Road?2 J1 Ball2 Ball4 Unweighted
Road Bland Matchable- Matchable- Average
Pixels: 1077 229 3126 3126
INRIA-1 | 12 22 56 39 | 32
(INRIA-2) | (86) (72) (62) | (61)
| I
SRI-2 | 63 32 76 43 I 54
l I
Teleos-1 | 83 10 86 84 l 66
Average | 53 21 73 55 | 51

Figure 7: Percentage of “matchable” pixels in biand areas assigned disparities.

techniques to automatically set key parameters, such as
patch size and search areas (as Teleos does). Another
place for improvement is in the filtering of the results
to eliminate matches that differ significantly from their
neighbors (as SRI and INRIA do).

There were a few surprises, such as Teleos’s successful
solution to one set of image pairs from CMU that in-
cludes a carpet with a repetitive pattern on it. Teleos’s
large patches were able to detect large regions of subtle
differences, which led to the correct disparities.

5.1 Technique-Oriented Summaries

No one of these algorithms has completely solved the
stereo problem, although all can produce basically usable
results on most reasonable imagery. Each has strengths
and weaknesses—and very often an algorithm'’s strength
on one dataset is its weakness on another!

INRIA’s algorithms assume that the images are in
epipolar alignment. This makes their searches more ef-
ficient, and keeps matches from wandering off of the
epipolar lines (for instance, “climbing” the edges of tree
trunks). However, when presented with nonepipolar im-
agery, INRIA-1 fell apart; INRIA-2 did better, but had a
persistent problem, producing rough disparity contours,
which are apparently due to the way the pyramid was
handled. The low-resolution results were simply zoomed-
out ustng pixel replication. This epipolar line constraint
also limits the usefulness of INRIA’s algorithms on im-
agery from nonpinhole cameras.

SRI's algorithm mostly disregards the epipolar con-
straint. Consequently, it had no particular problems
handling nonepipolar imagery. However, it failed to
match many of the very smooth tree edges in the EPI
sequence, probably because its matches “slid” up the
linear sides of the trees.

INRIAs algorithms search the entire width of the
epipolar line. This helped them to do well on some
datasets. but when the ground texture was ambiguous,
their technique tended to return no match because of
multiple choices.

SRI's algorithm depends on early matches to “set the
context . so that later searches for matches can be con-
fined to the disparities in that neighborhcod. When
there 1s enough global texture for the initial matches to
give a good sampling of the disparities, this works well,
enabling SRI-2 to produce ground plane matches where
the others couldn’t. However, when lack of foreground
detail keeps SRI-2 from having the right initial matches,
1t falls to match, or finds random mismatches.

Teleos’s algorithm uses very large windows dynami-
cally skewed to accommodate tilted planes. This causes
1t to do well on some ground planes where it was able to
disambiguate the pattern through minor variations, but
not on others where the ground plane tilt was out of the
allowed range of skewing. Of course, these large windows
also cause it to have problems with any scene containing
depth discontinuities—it either finds no match, or tries
to blend the foreground object into the background ob-
Jects, or widens the foreground ohject out onto the back-
ground. In addition, Teleos-1's scanning heuristic cre-
ates some rather peculiar artifacts— extending objects
m opposite directions on alternate scan lines. However,
its ability to into low-contrast situations is very
good.

“see”

The Teleos system. with its large correlation windows.
also produces smaller range images, because it limits
matching to areas where the full correlation patch is
within the image. In an active vision system, the sensors
could be reoriented to center objects of interest that may
initially appear on the boundary of an image.




Both INRIA's and SRI’s algorithms use fairly small

windows. This removes much of the need for win-
dow skewing and warping, although on extremely tipped
planes, warping would be helpful. INRIA-1, INRIA-2,
and SRI-2 all do better on tilted planes if the informa-
tion is slightly “fuzzy”. These algorithins don’t do nearly
as well in the presence of man-made ambiguous patterns.

SRI's algorithin tends to leave more holes in the
data—low-information places that it refuses to try to
match, ambiguous places where it can’t backinatch suc-
cessfully, or error matches that it has detected and re-
moved. This gives the data a “lacey” appearance, and
1t should probably be followed by an interpolation step,
to fill in these problem areas. (The SRI technique is
capable of interpolation, but it was not used in this eval-
uation.) SRI-2 often leaves a nice band of no-matches
outlining depth discontinuities, where one doesn’t really
want separate objects “smoothed™ together. SRI-2 also
often refuses to match areas like the sky. which techni-
cally don’t have a match.

None of the algorithms currently distinguishes be-
tween good image data and the “null data™ areas caused
by image digitization, reprojection, and so forth. This
can lead to rather peculiar mismatches around these ar-
eas of null data. All of the algorithins should add the
ability to accept a mask telling what parts of the image
not to try to match. Better yet would be a preprocessing
step to construct these masks automatically.

It was interesting to see how much better all of the
algorithms did on the imagery taken by JPL than on
the SRI imagery. A major factor is the unusual aspect
ratio of the SRI imagery caused by digitizing individual
fields, since the vehicle was moving fast enough to show a
significant difference between fields. JPL's iimagery was
taken while the vehicle was standing still. Other differ-
ences that may have contributed include image contrast,
epipolar geometry, and look angle (SRI’s cameras were
looking far forward, whereas JPL’s were looking down
a bit more). We note that the exchange of imagery can
help in algorithm development by avoiding inadvertently
“tuning” one’s algorithm to one’s particular style of im-
agery.

5.2 Open Research Problems

After examining the results from this dataset, we
have selected the following topics for future research in
the area of low-level passive range sensing:

1. Filtering out gross errors caused by erroneous
matches.

2. Handling the wide dvnamic range in intensities com-
mon in outdoor imagery, from dark shadowed re-
gions up to specularities off shiny surfaces.

3. Handling the large range in adjacent disparities aris-
ing from narrow foreground obstacles.

4. Adjusting algorithm parameters automatically to
properly handle different image regions, such as
bland areas and texture regions.

[\S3

. Detecting multiple matches and selecting the cor-
rect one, possibly by analyzing multiple images.

6. Providing validation and confidence estimation
mechanisms.

-1

. Detecting
depths on

occlusion edges and reporting accurate
both sides of them.

8. Detecting and characterizing small- to medium-
sized obstacles, such as rocks and bushes.

9. Detecting “negative” obstacles, such as holes and
ditches.

Although the JISCT dataset did not include examples of
the last two areas, they are clearly important for cross-
country navigation.

6 Conclusion

As a result of this phase of our stereo evaluation, we
can make a few general observations and develop a few
1deas for the project’s next phase.

First, the time is right for evaluation. If promising
computer vision techniques. such as stereo analysis and
road following, are to make the transition from the re-
search laboratory to practical systems, their characteris-
tics will have to be well enough documented that system
engineers can understand them and predict their behav-
lor. We view this evaluation as the first tentative step
toward developing this type of characterization.

Second. evaluations of this type require a significant
effort. To give an idea of what is involved iu such an
evaluation, SRI did the following: gathered imagery from
five groups, converted it into a standard format, designed
the experimental procedure, distributed the imagery to
the participants, collected the results, converted then:
into a uniform format (correcting for a few mistakes in
the original specifications), developed visualization rou-
tines, used these routines to interactively examine all the
results, developed statistics gathering routines. applied
these routines to the results, wrote the report, and finally
distributed the report and copies of everyoune’s results.

Third, ideally an evaluation of this type should be per-
formed periodically to provide estimates of the relative
improvements of the techniques.

6.1 Critique of the JISCT Evaluation

Some things that were done correctly:

e Ve developed a cooperative attitude among the par-
ticipants. This was the first time our community
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had tried establishing an ongoing evaluation pro-
cess and we knew that we'd make mistakes. We also
knew that the participants have their egos involved
in their systems, and we wanted to emphasize the
constructive aspects of comparing techniques.

e The experimental procedure was almost right. The
idea of distributing a large number of stereo pairs,
using some for a training set. freezing the “official”
algorithm, and then applying it to 45 test pairs is
correct. The large number of pairs virtually forced
the groups to implement an automatic technique,
which they could apply to any image pair. As a
result, there are now four systems around the world
that can be easily tested on new imagery.

o The idea of asking for precision estimates, confi-
dence estimates, and annotations was correct. Al-
though no group produced them all, future systems
will be expected to because this information is so
important for higher-level users of the results.

e The basic idea of sharing data from several groups
was good because applying the algorithms to this
diverse set of images brought to light several im-
plicit and explicit assumptions and parameters in
the algorithms.

e Since any evaluation of this type can only include a
limited set of imagery that attempts to cover all pos-
sible dimensions, the idea of including several small
controlled experiments worked well. For example,
the set of images from Teleos explored the ability of
the algorithms to handle increasing noise; the SRI
EPI sequence tested a range of baselines.

Some things that should be changed:

¢ The lack of ground truth significantly limited the
types of automatic “objective” evaluations possible.
Ground truth is expensive, but there is no substitute
for assessing quantitative issues.

¢ For this initial phase we built our dataset primar-
ily from existing data. In the future we need to
gather data that is more realistic and appropriate
to the task. In particular, for UGV tasks, the data
should be from the demonstration sites and include
examples of the common “obstacles,” such as ruts,
bushes, rocks, ditches, and water. Future datasets
should also include sequences of images and trinoc-
ular data, not just individual pairs.

* The whole process took too long (almost a year).
Techniques can change faster than that. To be rel-
evant, the results should be returned within a few
months. This turnaround time is more possible now
that we have been through the process once and
have developed routines for analyzing the data.

e More auxiliary data (e.g., calibration information)
should be supplied with the dataset. Some tech-
niques rely on this information to reduce search and
set key parameters. Also. it will generally be avail-
able in most applications.

6.2 Plans for the Next Evaluation Phase

We plan to include three types of imagery in the next
dataset: demonstration-related pairs and sequences, a
few image-intensified pairs. and some synthetic pairs
that are less artifactual than previous ones. One of our
goals for this phase is to explore more rugged off-road
scenes, Including deep ruts, tall grass. and ditches, so
we are including several examples of each in the new
dataset. The image-intensified data will provide our first
look at applying our techniques to night-vision-type im-
agery. The synthetic data is formed from real pairs by
modifying a set of computed disparities, and then form-
Ing a new right image based on these disparities. This
data, although still not completely realistic, is signifi-
cantly better than previous versions and provides com-
plete ground truth.

We plan to distribute the dataset to 10 or 15 research
groups for analysis. After debugging the process, we are
in a position to open up the evaluation to include a wider
group of participants.

Reference

Bolles, R.C., H.H. Baker. and M.J. Hannah. “The
“JISCT” Stereo Evaluation,” SRI International Report,
January 1993.

274

'—




Appendix B
“Spatiotemporal Consistency Checking of Passive Range Data”

R.C. Bolles and J. Woodfill

presented at the International Symposium on Robotics Research
Pittsburgh, Pennsylvania, October 1993




Spatiotemporal Consistency Checking Of Passive Range Data

Robert C. Bolles, SRI International, bolles@ai.sr1.com
John Woodfill, Interval Research, woodfill@interval.com

Abstract

A spatiotemporal technique for consistency checking
and cross-temporal integration of stereo range results is
presented. This technique is designed as part of a passive
ranging system whose goal is to produce range images
with as high a resolution as possible in order to support
the detection of as small objects as possible. The ap-
proach is to minimize the application of smoothing and
spatial-aggregation operations, which reduce resolution,
and to employ a set of multiple-match consistency checks
over space and time to filter out mistakes. We present
the basic approach, describe two implementations of it
(one of which is a research-oriented system that runs on
a Connection Machine and the other of which runs on
a Sparcl0 and provides real-time feedback for SRI’s in-
door robot, Flakey), present an initial characterization
of the effectiveness of the technique, and conclude with
ideas for future work.

1 Introduction

The ultimate goal of this research is to develop pas-
sive range sensing techniques that provide the spatial
and depth resolutions required to detect small, but dan-
gerous, navigation obstacles, such as holes and medium-
sized rocks. Current feature-based techniques provide
insufficiently dense results to detect these scene elements
while correlation-based stereo and motion systems typi-
cally smooth over them. Current correlation systems ap-
ply smoothing or spatial aggregation operations in three
places, in image preprocessing (e.g., performing Gaus-
sian smoothing to reduce image noise), in matching (e.g.,
using large correlation windows to provide an ample sta-
tistical footing), and in post processing (e.g., eliminat-
ing results that differ significantly from their neighbors).
These operations reduce the chance of errors, but they
also dramatically reduce the resolution of the results.
Our approach, on the other hand, is to minimize the use
of spatial aggregation in order to maximize the resolution
and to provide an alternate set, of filtering techniques to
detect mistakes. - .

We propose a class of filtering strategies based on
checking the consistences of multiple in(ter)dependent
matches. The idea behind this class of strategies is
the same as that behind the consistency checking tech-

niques used in Hannah’s left-to-right and right-to-left
doublechecking [7), and INRIA’s trinocular filtering (1].

In this paper we introduce a natural extension of these
techniques to include spatiotemporal consistency check-
ing. Figure 1 shows the basic approach. Each arrow
represents an independent match from one image to an-
other. The system performs conventional stereo dispar-
ity estimation from left to right and optical flow estima-
tion from present to past. The disparity estimates are
corroborated by performing an additional right to left
stereo match and verifying that the left to right result is
the inverse of the right to left (the “left-right check”), as
in [7) and [6]. Optical flow estimates are similarly corrob-
orated by estimating the past to present flow field (the
«forward-back check”). If these checks fail, the matches
are marked as invalid. In addition, since an optical flow
estimate is available for each pixel in both cameras, the
spatiotemporal transitivity of two stereo estimates and
two optical flow estimates can be checked to insure that
the four sided “loop” of matches is consistent (the “spa-
tiotemporal check”). If the spatiotemporal check fails,
the confidence in the individual matches is decreased.
Validity information is associated with what we term
“pixel features,” instead of “pixels” or “features,” be-
cause the information is associated with individual pixels
that are tracked over time.

This spatiotemporal matching strategy provides a nat-
ural way of integrating local depth images over time.
As shown in Figure 2, our model of the scene is image-
centered. Each pixel-feature has associated stereo dis-
parity estimates, optical flow estimates and auxiliary in-
formation describing the numbers and types of consis-
tency checks passed by the pixel-feature. An advantage
of this type of scene modeling is that it avoids the need to
explicitly compute the six degree-of-freedom transforms
that relate one local 3D model to another, as shown in
Figure 3. Computing these transforms can be tricky
when, for example, there is motion in the scene, as well as
computationally expensive (e.g., see {14)). Our approach
to integration differs from most other approaches, how-
ever, in that it does not provide a persistent global model
of the scene. Rather it provides an image-centered model
of the currently visible surfaces of the scene objects. As
objects leave the field of view, they are lost. The infor-
mation produced by this type of modeling system could
be provided as data to a more conventional global mod-
eling system. )
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Figure 1: Spatiotemporal multiple-match consistency checking.
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Figure 2: Image-centered modeling of the scene from a sequence of stereo pairs.
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Figure 3: Global map formation from a sequence of stereo pairs.

The remainder of this paper is organized as follows.
In Section 2 we describe several techniques for attain-
ing credible stereo disparity estimates and discuss how
they relate to our consistency-checking approach. In Sec-
tion 3, we describe an experimental system that makes
use of spatiotemporal consistency checking, and present
examples of its use within a sensor system to support
cross-country navigation. In Section 4, we briefly de-
scribe a second implementation of these ideas in a real-
time system for SRI's indoor robot, Flakey. And finally,
in Section 5, we draw some conclusions and discuss ideas
for improvements and future work.

2 Credible Stereo Estimates

Producing stereo disparity estimates is conceptually
simple: for each pixel in one image, find the best match
(according to some metric) in the other image. However,
attaining credible disparity estimates is a more complex
problem, to which there are many approaches.

System Engineering: Constrain the environment
and/or the sensing system to eliminate or minimize
the impact of as many factors as possible. For exam-
ple, restrict the lighting to be from a well-modeled
source. This approach also includes techniques to
reduce the search region by.calibrating the cam-
eras relative to one another. Smaller, more focused
search regions reduce the’ computation required to
find a match, and more importantly, reduce the
chance of conflating similar appearing but distinct
points.

Selective matching: Prefilter the images to select the
best points to be matched. Only attempt matches
for features that are highly distinctive. Hannah for
example does not attempt matches for points in ar-
eas with low local variance [8]. '

Multiple cameras: Use N calibrated cameras to ob-
tain better depth estimates. The correlation sur-
faces for (N — 1) matches can be merged at each
point, and the best “global” match can be selected.
To merge the results, the raw disparities are con-
verted into a common representation. Moravec im-
plemented a system of this type by sliding a camera
to nine different positions along a bar [11]. Kanade
et al. have developed a technique of this type, us-
ing an inverse disparity representation to integrate
multiple results {9]. They have applied their tech-
nique to camera configurations with three or more
cameras in a line. Kanade is currently developing
another version of this type of system using seven
cameras arranged in an L-shaped configuration.

Match evaluation: After computing a set of matches,
eliminate the “incorrect” ones. This can be done in
many ways. For example, compare a pixel’s dispar-
ity to the disparities of its neighbors and discard it if
it’s significantly different from all of them. Or com-
pare the results of two different matching methods;
if they disagree at a pixel, mark it as untrustworthy.

Most stereo systems use a combination of these tech-
niques to maximize their chances of producing dense and
reliable results. In this paper we concentrate on match
evaluation techniques. '




A number of techniques have been used to evaluate
stereo matches, some with more success than others.
Probably the first technique to be tried was simply a
threshold on the correlation value computed for the best
match. Unfortunately, although this value is related to
the validity of a match, the range of values associated
with correct matches significantly overlaps the range of
values for incorrect matches. This means that for any
reasonable threshold there is a large number of correct
matches labeled as “bad” and incorrect matches labeled
as “good.” This situation occurs because the correlation
value is a function of several interrelated factors, such
as the change in perspective from one viewpoint to an-
other, the reflectance properties of the scene feature, the
amount of noise in the images, the overall change in in-
tensities from one image to another, and the number of
nearby features that have a similar appearance.

Given this complex interrelationship of factors, many
approaches to evaluating stereo matches have been tried:

Factor Analysis: Develop computational models of as
many of the factors as possible, implement a match-
ing technique that estimates the parameters of these
models, and then set thresholds on these parameter
values. For example, Baltsavias has implemented
an iterative matching technique that can estimate
such things as the surface normal of a scene feature
and the gain and offset between two image windows

.

Correlation Surface Analysis: Examine the correla-
tion surface near the best match and compute prop-
erties such as the height of the highest peak relative
to the “background” or the number of alternative
matches (i.e., significant peaks) within a certain dis-
tance of the highest peak. For example, Nishihara
has implemented an evaluation procedure that only
accepts a match if its peak is significantly higher
than the second best one and the width of the peak
is greater than some threshold [3].

Object Surface Constraints: Invoke constraints de-
rived from assumptions about the types of surfaces
in the scene. For example, Pollard et al. apply a
threshold of one pixel on the disparity gradient be-
tween two measured points [13]. As another exam-
ple, Hannah has implemented an outlier rejection
process that examines a large region around each
result and marks points as inconsistent when they
are more than 3 or 4 standard deviations away from
the mean of the disparities in the region {3].

Multiple In(ter)dependent Matches: Perform
multiple matches for each. feature and compare the
positions of their results’ If the positions do not
agree, mark the results as inconsistent. For ex-
ample, Ayache and Lustman have implemented a
trinocular stereo system in which two matches are

made for each point, one from imagel to image2 and
one from image2 to image3. Then, as shown in Fig-
ure 4, if the point in image3 is close enough to the
epipolar line corresponding to the point in imagel,
mark the points as consistent [1].

Existing stereo systems have typically used combinations
of these techniques to winnow out mistakes. In this pa-
per we focus on the multiple-match approach and ex-
tend it to include temporal consistency for multi-camera
sensors. One reason we concentrate on multiple-match
techniques is that it is easy to set a threshold for “good”
matches. We use a threshold of one pixel for all tests.
For some of the other tests, such as correlation surface
analysis and outlier rejection, it is difficult to find a prin-
cipled way of setting the thresholds.

Several multiple-match techniques are possible and
many of them have been incorporated into existing stereo
systems to filter out mistakes. Some examples are:

Compare Multiple Depth Estimates: Given
N calibrated cameras (where N is 3 or more), (1)
select one camera as the pivot camera, (2) for each
point in the pivot camera’s image, compute (N-1)
depth estimates by analyzing pairs of images, one of
which is from the pivot camera, (3) mark points as
consistent if the depth estimates are approximately
equal. Yoshida and Hirose have implemented a five-
camera sensor based on this approach [17]. '

Epipolar-line Check: Given three calibrated cam-
eras, there is a way to use two matches for each
point to check the results, as shown in Figure 4:
Match points from imagel in image2 and points
from image2 in image3; If the distance between im-
age3’s point and the epipolar line corresponding to
imagel’s point is sufficiently small, mark the point
as consistent [1].

Compare Different Techniques: Apply two or more
matching techniques and compare the positions of
their results. For example, different search strate-
gies and/or different correlation metrics could be
used. As far as we know, no one has implemented
this approach. Several stereo systems use different
sized windows within a hierarchical search strategy,
where one match guides the search for a higher-
resolution one, but nobody has applied two com-
pletely different techniques (eg.,a correlation-based
technique and an edge-based technique) and then
merged their results.

Left-right Check: Perform each match twice, once
from the left image to the right and once from the
right image to the left (see Figure 5); if the left-to-
right match and right-to-left matches are approxi-
mately inverses, mark the point as consistent {e.g.,
see [7] or {6]). '




\.)QG/ 7
N

&
' d
7’

Y

Figure 4: Trinocular epipolar-line consistency check.

(b) [

(©) ® e

) S g

h Left Right

Figure 5: Left-right consistency check.




Transitivity Check: Given three uncalibrated cam-
eras (or three crudely calibrated cameras), another
way to identify possible mistakes is to perform three
matches for each point, one from imagel to image2,
one from image?2 to image3, and one from image3 to
imagel (see Figure 6). If the distance from the start-
ing point in imagel to the final point produced by
traversing the loop is small enough, mark the point
as consistent. This requires more matches than the
epipolar-line check, but it can be applied without
knowing a precise calibration.

Object-Relative Motion Check: If the motion of
the vehicle is not known (and cannot be easily com-
puted), then pairs of images taken at different times
can be used to filter out mistakes by (1) tracking
points over time, (2) selecting a point in the scene
as a reference point, (3) computing the z-y-z loca-
tions of all points relative to the reference point, and
(4) marking points with stable relative distances as
consistent. Moezzi et al. have implemented a sys-
tem based on this approach [10].

Vehicle-Relative Motion Check: Given stereo im-
ages taken over time from a vehicle making a known
motion (or a motion that can be computed), candi-
date matches can be evaluated by (1) computing a
vehicle-relative z-y-z location from one image pair,
(2) tracking the point into a second image pair, (3)
computing another location for the point, adding in
the known motion, and finally (4) checking to see if
the two estimates are approximately equal. If not,
the point is either a mistake or on a moving object.

We are interested in the case of imagery captured from
two cameras mounted on a vehicle moving on relatively
rough terrain. The cameras are relatively well aligned,
but may move slightly with respect to each other and are
uncalibrated. The environment is unmodelled and may
contain moving objects. No additional information is
available about the dynamic motion of the vehicle other
than the video data itself. )

We are experimenting with a version of the transitivity
check that compares stereo matches over time (see Fig-
ure 7). In keeping with our goal of minimizing smooth-
ing, we work directly with the raw intensities at full field
resolution and use small correlation windows to perform
both the stereo matching from left to right and optic-
flow matching over time. If the two disparity maps D.
and D, and the two flow fields M, and M, are viewed
as maps from pixels to pixels, then for each pixel P, the
spatiotemporal transitivity check measures the distance
between M, (D.(P)) and Dp(Mi(P)). If the distance be-
tween these two points is within one pixel, P is marked
as consistent.

We are still exploring ways of characterizing the effec-
tiveness of this type of filter. As discussed in the next

section, we have found that, for example, the spatiotem-
poral test catches a significant number of mistakes not
detected by the left-right check.

Since some erroneous matches pass both the spa-
tiotemporal test and the left-right check, we are explor-
ing two additional techniques for consistency checking.
One is a form of the vehicle-relative motion check that
makes use of local estimates of depth change derived
from simple assumptions about the vehicles path and
measured changes in scene depth. The second involves
the use of local consensus to predict and corroborate
depth estimates that may fail other consistency checks.

In the next section we describe the experimental sys-
tem used to explore these tests and their interactions.

3 The MIME System

Our purpose in implementing the Multiple
In(ter)dependent Match Evaluation (MIME) System
was to explore the idea of maximizing the resolution
of range data produced by a passive sensor. Our ap-
proach has been to minimize the use of explicit or im-
plicit smoothing operations and to recover the beneficial
filtering effects of smoothing by applying a set of tests
that compare the results of multiple matches.

The MIME system is implemented on a Connection
Machine. As a research system, the system is designed to.
facilitate the comparison of different matching and filter-
ing strategies, not for speed. Assuch, it has 20 or 30 top-
level switches and parameters for specifying processing
configurations. The switches include whether or not to
discard measurements that fail left-right, forward-back,
and spatiotemporal checking. The stereo and motion al-
gorithms have parameters such as the sizes of correlation
and search windows.

Imagery

Our experimental data was obtained by mounting
a pair of monochrome cameras on an BMMWYV vehi-
cle, aligning the cameras manually so their optical axes
were approximately parallel, recording the data on 8mm
videotape as the vehicle was driven on and off road, and
finally digitizing sequences of video fields from the tapes.
The epipolar geometry is not known precisely, partly be-
cause the relative position of the cameras is not known
precisely and partly because we have not attempted to
compute lens distortions and the like. In general, we and
others have found it difficult to maintain precise calibra-
tions as the vehicle bounces along over rocks and ditches,
making it desirable to have a system that is capable of
working with less constrained imagery.

The overall image properties vary from one image to
the next for several reasons. First, some of the data
was gathered with auto-iris lenses. These lenses cover a
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wide dynamic range of lighting conditions by automat-
ically adjusting their apertures, but have the problem
that they are not linked together, so one aperture might
be opening while the other is closing. In addition, the
lens control systems tend to “hunt” for the best settings,
causing intensities and depth-of-field to fluctuate contin-
uously. A second reason for intensity differences is that
there is no way to completely turn off the automatic gain
control (AGC) on our COHU cameras. A third reason
for intensity differences is that our method of synchro-
nizing the two cameras involves using the output from
one camera to synchronize the second one. This syn-
chronizes the cameras, but it tends to drop the intensity
of the initial camera a little because its output is dou-
bly terminated. Lastly, dirt and smudges on the lenses
produce regions that are darker than their matches.

In this kind of imagery, absolute intensity levels can-
not be relied upon, forcing us to use a normalized cor-
relation metric. The normalized metric does a good job
of factoring out the gain and bias between the two cor-
relation windows, however, factoring out gain and bias
reduces the distinctiveness of a correlation window. In
other words, if the intensity transforms were better con-
strained, a tighter requirement could be placed on po-
tential matches, which would reduce the chances of in-
correct matches. This line of reasoning is similar to the
argument for using as much geometric information (e.g.,
epipolar constraints and a limited range of acceptable
object distances) as possible to limit the search areas
for matches. There are two benefits. First, the smaller
the search area, the faster the search can be performed.
And second, the smaller the search area, the higher the
probability is of finding the correct match. Similarly
in the intensity domain, the better the image-to-image
intensity correspondences are known, the more directly
the matches can be performed and the more likely the
correct match will be found.

System Description

The system is based on four multiple-match filters: the
left-right check, forward-back check, the spatiotemporal
check, and the forward motion version of the vehicle-
relative check. The last filter has been implemented,
but not thoroughly tested.

Given a new image pair, the “complete” system per-
forms the following sequence of operations (see Figure 7):

1. Compute two dense stereo depth maps, one map-
ping pixels in the left-image to points on the right
image, D', and one mapping pixels on the right
image to points on’the left image, D'

9. Perform the left-right check by evaluating whether
the two depth maps, DI and D7' are approximate
inverses.

3. Compute four dense flow fields, two mapping pixels
on the current left and right images to points on
the previous left and right images, M;” and M/?,
-and two mapping pixels on the previous left and
right images to points on the current left and right
images, M and MP°.

4. Perform forward-back checks by testing whether the’
left flow fields, M;* and M‘, are inverses, and
whether the right flow fields, M P and MF¢, are in-
verses.

5. Perform the spatiotemporal check, using the depth
map computed for the previous pair of images
Dir, the two flow fields just computed M;T and
M¢P, and the just computed depth map DYf. If
|M,"’(D£'(P))—D:,'(M,"(P))| < ¢, pixel P is la-
beled consistent.

6. Bring forward the image-centered information by
mapping the data pertaining to pixels in the pre-
vious left and right images through the flow fields
M, and M,. If pixel P corresponds to pixel P’ in
the previous image, i.e., if M(P) = P’, and some
property R such as “valid since cycle 10” held of
pixel P’ in the previous image, then R(M(P)) can
be asserted, in the present image.

7. Update the image-centered information to include
the results of the current consistency checks.

Figure 8 shows an example of the type of sequence pro-
cessed by the MIME system. The images have a rect-
angular aspect ratio because they are individual fields
digitized from a videotape. They are a sequence of even
fields, which are taken 1/30th of a second apart. Fig-
ure 9 shows the disparities computed and filtered from
4 image pairs. In this figure, lighter points are closer to
the sensor. The dark spots on the depth map are points
that failed one of the consistency checks over the process-
ing of the four shown pairs. To emphasize the heights
of objects, we transform these raw disparities into ones
relative to a horizontal plane, as shown in Figure 10.

Stereo algorithm

The metric used for determining stereo correspondence
is the standard normalized correlation metric [8]. Since
we are interested in detecting small scene elements, all
processing is done at a single scale. In the imagery we )
are considering, horizontal disparities fall in the range
between 0 and approximately 85 pixels. Since the cam-
eras are only approximately aligned, scan lines do not
necessarily correspond to epipolar lines. Vertical dispar-
ities in our imagery generally fall in the range of -3 to 3
pixels.

The combination of single scale stereo with weakly
aligned cameras results in large search windows; approx-
imately seven scan lines of 85 disparities each, in our




Figure 9: Temporally filtered stereo disparities for a pair of images from Figure 8.




Figure 10: A skewed version of the disparities shown in Figure 9.

case. However, for any given stereo pair, vertical dispar-
ities do not vary greatly in a local area. Making use of
this observation, the problem of determining vertical and
borizontal disparities can be factored into two subprob-
lems. The determination of vertical disparity is done
first and makes use of a smoothing technique known as
mode filtering [15, 16]. Subsequently, once the vertical
disparity is known, the horizontal disparity can be de-
termined from a single scan line. The stereo algorithm
performed at each pixel P, has three steps:

1. Determine the vertical disparity of the best match
in the entire search window.

2. Mode filter the vertical disparities from step 1 (i.e.,
select the most popular vertical disparity in the local
area surrounding each pixel as the y-component of
the pixel’s disparity.)

. Report a disparity for each point by choosing the z-
component of the disparity computed on the scan-
line corresponding to the y-component selected in
step 2.

We include the mode filtering step in the stereo algo-
rithm despite the fact that it is a type of spatial aggre-
gation for two reasons. First, we expect the y disparities
to vary relatively smoothly in the scene, except at large
depth discontinuities. And second, the smoothing is not
directly applied to the raw image or the results, rather
it is being used to compute an intermediate result that
is used to locate the final matches. Figure 11 shows the
unfiltered y disparities computed for one of the pairs of
images in Figure 8. Figure 12 shows the mode-filtered
version of these disparities, which are used to select the
row for the best match. As mentioned earlier, if the
epipolar constraints are known precisely, the steps used
to determine y disparities-would not be necessary.

Optical-flow algoritiim

The computation of optical flow is performed using sum
of squared differences (SSD) correlation followed by a
mode filtering step. The use of SSD correlation is justi-
fied since the images are taken from the same camera one

10

thirtieth of a second apart, and absolute intensity levels
are not expected to change drastically between frames.
When there is the potential for rotational motion in the
scene, it is important to keep the optical-flow correlation
window as small as possible. Mode filtering makes sense
because the flow field resulting from forward motion is
expected to vary relatively smoothly in an image, except
at depth discontinuities.

Approximate inverse check

We have introduced a slightly different left-right
(forward-back) check than used by previous researchers.
The first versions of this filter required that the left-to-
right and right-to-left matches to be exact inverses (i.e.,
to the pixel). However, because of quantization effects,
the commonly used version of the test allows the inverse
to be within one pixel of the starting pixel, as shown in
Figure 13. Our version loosens that constraint a bit more
by taking into account the possibility that the right-to-
left match may land on a pixel that doesn’t have a valid
right-to-left match. It accepts a pixel in the left image if
the matching pixel in the right image or one of its two
neighbors maps back to within one pixel of the initial
point (see Figure 14). This change makes the test more
symmetric. It also accepts a few more pixels in the left
image as valid. Figure 15 shows the results after the left-
right test has been applied. Figure 16 shows the results
after both the left-right and spatiotemporal tests have
been applied. Points in black indicate pixels that have
been deemed inconsistent.

Additional consistency.checks

Errors persist through the left-right check, the forward-
back check and the spatiotemporal check over many im-
age pairs. To catch these mistakes, we are developing
two additional consistency checks. One is a version of the
vehicle-relative motion check that determines local ap-
proximations of measured depth changes to detect mis-
takes. In the simple case of linear forward motion, all
pixels corresponding to stationary elements in the scene
should change depth by the same amount. If the depth of




Figure 12: Mode filtered y disparities.
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Figure 13: Normal left-right consistency check.
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Figure 16: Disparity results after both the left-right check and the spatiotemporal check have been applied.
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a pixel is mismeasured, its depth change will differ from
the change measured elsewhere. For example, consider
the two scene features A and B in Figure 17a, which are
viewed by two one-dimensional cameras. The point A
projects into aL in the left image and aR in the right
image. If the matching system erroneously identifies bR
as the match for aL (as shown in Figure 17a), the sys-
tem produces a fictitious scene point, shown as the hol-
low point in the upper right corner of the diagram. If the
pair of cameras is moved forward (i.e., from left to right)
and the matching system persists in matching B to 4,
as shown in Figure 17b, then the fictitious point appears
to move a distance d in the world. If d is significantly
larger than the change potentially caused by inaccurate
disparity measurements, then the al-to-bR match is ei-
ther a mistake or the corresponding point is moving in
the scene.

The second form of additional consistency check in-
volves the use of the results of the neighbors of an in-
valid point to estimate an expected value of the invalid
point. This estimate can be used in two ways. Given an
estimate of an invalid point’s disparity, the system can
search a small window about that estimate for the best
match. If that match passes all the filters, it is marked
as valid and included in the reported results. In our im-
ages, this process fills in 15 to 20% of the pixels initially
marked as inconsistent by the left-right or spatiotempo-
ral tests. Alternately, if the initial match for the invalid
pixel agrees with this expected value, it can be labeled
as consistent.

An open question about this process is the selection
of the size of the search window about a suggested dis-
parity. If the window is as large as the initial search
window the same disparity will be found. At the other
extreme, if the window is reduced to a single pixel, the
system would report that pixel as the match and it would
automatically pass all tests because, by definition, it is
the best match in the region. So the question is how to
reduce the size of the search region in a principled way
so that it limits the search to an appropriate sized re-
gion without invalidating the evaluation procedures. We
arbitrarily used regions that were 10 pixels wide in our
experiments.

Experimental Results

In order to characterize the effectiveness of the vari-
ous tests within the MIME system, we have applied it to
several different image sequences with several different
parameter and switch settings. Figure 18 shows a typ-
ical set of statistics produced by the system when both
the left-right and spatiotemporal tests are applied. The
parameters used for this and dther sequences are char-
acterized in Figure 19.

For this particular sequence, the vehicle was turning
to the left as it approached a deep rut in a relatively flat
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field (see Figure 20). Figure 21 shows the region of the
image in which we gathered statistics. The rest of the
image is out of the field of view of the right image. The
left-right test marks an average of 12% of the pixels in
the left image as inconsistent.

The motion tracking procedure is virtually perfect and
the forward-back check has no trouble verifying the flow
vectors. The forward-back check marks fewer than 2
pixels in every 10000 as inconsistent.

The spatiotemporal loop check marks an additional
8% of the points as possible errors, reducing the average
number of “consistent” points in the left image to be
79.7%. When these tests are convolved together over 4
image pairs, the number of completely compatible points
is 67.6%. When the suggestion procedure is used to fill
in missing data, this number increase a few percentage
points to about 72%. The number of gross errors passing
all the tests is on the order of 10 to 20 pixels per image.

Persistent errors

Figure 22 illustrates a situation in which the left-right
test fails to filter out a mistake. Two events conspire
to produce this erroneous result. In Figure 22, alL is
matched to bR, instead of aR, because something has al-
tered A’s appearance in the right image (e.g., A may be
partially occluded). Similarly, bR is incorrectly matched
to aL because B’s appearance in the left image is differ-
ent. As a result of these two mistakes, the left-right test
erroneously accepts the al-to-bR match.

Figures 23 and 24 show an example of this type of
mistake. Figure 23 shows the context of the mistake.
It occurs on the front edge of a deep rut. Figure 24
shows blown-up versions of the images around the mis-
take. The correlation window on the right in the left
image is mistakenly matched to the left window in the
right image, instead of the right one. This happens be-
cause the window straddles an occlusion edge between
two regions at different depths, the front edge of the rut
and the back of the rut. In the right image, these two
subwindows have different disparities, so that there is
no coherent window matching the one in the left image.
As a result, the matching system finds a completely new
window in the right image that looks like the one in the
left. This new window is also along the edge of the rut,
causing the same problem for the matching procedure
when it tries to match from right to left. Unfortunately,
but not too surprisingly, this right-to-left match happens
to find the original window in the left image as its best
match (instead of the left window in the left image). As
a result, the mistake passes the left-right test.

Figure 25 shows another example of how a mistake
can pass the left-right test. The X on the left of the left
image is not in the field of the view of the right camera.
Therefore, the best match for it is the only visible X in
the right image. If the search from right to left happens




Figure 17: (a) aL-to-bR matching mistake and the deduced scene point. (b) Implied motion of the deduced scene

point caused by a reoccurrence of the mistake.

Completely Completely
Image Left-right Forward-back | Spatiotemporal Consistent for | Consistent w/
Pair Consistent | Consistent Consistent Last Four Pairs Prediction

1 90.27 - - - -

2 88.83 100.00 82.36 - -

3 87.57 99.96 80.25 - -

4 88.11 99.97 77.39 70.04 70.04

5 89.55 99.98 77.54 66.32 66.71

6 89.83 100.00 84.43 66.68 67.55

7 88.33 99.99 82.62 67.41 69.13

8 89.92 100.00 82.05 69.82 72.30

9 89.32 100.00 85.22 75.13 78.91

10 87.19 100.00 71.76 70.03 74.94

11 86.41 99.89 17.77 66.88 72.83

12 86.43 100.00 75.37 65.16 71.28

13 87.37 99.98 75.87 62.91 68.70

14 86.81 100.00 82.82 64.72 70.74

15 86.72 99.82 78.55 64.00 69.93

16 86.32 100.00 82.29 67.52 72.82

17 86.45 100.00 77.49 70.51 74.77

18 _ 8476 100.00 76.89 67.15 72.84

19 85.37 100.00 78.67 67.80 74.15
Average: . 87.7 99.98 79.7 67.6 71.7

Incremental: 123 0.02 8.0 12.1 4.1

Figure 18: Table of consistent pixels over time.
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Parameter Value
Width of stereo search window 85
Height of stereo search window 7
Width of stereo correlation window 11
Height of stereo correlation window 7
Diameter of stereo mode filter 15
Width of motion search window 19
Height of motion search window 9
. ) Width of motion correlation window 7
Height of motion correlation window 7

. Figure 19: Table of parameters.

Figure 21: Region from the left image in Figure 20 from which the statistics in Figure 18 were computed.
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Figure 22: A pair of mistakes that conspire to pass the left-right check.




Figure 24: A blown-up version of the mistake shown in Figure 23

to prefer the left X, as indicated in the diagram, then
this pair of mistakes leads to a mismatch that is not
caught by the left-right check. Again, it took two events
to produce the problem.

Figure 26 shows an example of how a mistake that
is missed by the left-right check can also be missed by
the spatiotemporal check. This example is similar to the
example in Figure 22. If the cause of the mistakes in the
first pair of images (e.g., partial occlusions) persists over
time, the spatiotemporal test may also miss the mistake.
Usually, however, the views of the scene features change
enough that the test detects an inconsistency and marks
the results as invalid.

4 Flakey’s Stereo system

For several years, Flakey, SRI’s indoor robot, has used
ultrasonic sensors and a structured-light sensor to locate
potential obstacles in its path. These sensors, however,
have several limitations. For example, sonar cannot de-
tect thin objects, such as table legs. And the structured-
light sensor can only measures distances to points that
are in a particular plane and are close to the sensor.
Therefore, in order to increase both Flakey’s sensing
resolution and sensing range, we have implemented a
streamlined version of the MIME stereo system on the
on-board Sparcl0 processor. The resulting system pro-
duces a 105-by-240 range image in .4sec. In addition,
Flakey’s control system can select horizontal stripes from
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this image to be recomputed at a higher rate. For ex-.
ample, it can compute 20 rows of the range image at
30hertz.

Flakey uses a dual lens system to project a pair of
images into a single video field. We originally installed
the optical 2-to-1 lens with the hope that it would mini-
mize the overall change in intensities from one image to
the next. However, the lens has such strong vignetting
problems that both half images are significantly darker
at the edges than they are at the middle. We tried two
separate cameras, but our inability to turn off their au-
tomatic gain control has made them difficult to use, es-
pecially indoors where there are a number of specular
fixtures and bright lights.

In order to run the stereo matching algorithm as fast
as possible, we did the following:

o Subsampled the images from left to right, reducing
315 columns down to 105. This reduced the range
of disparities from about 50 to 16.

e Simplified the correlation metric to be the sum of
squared differences, which can be computed signifi-
cantly faster than normalized cross correlation. The
sums are computed incrementally by sliding the the
search region across the image.

e Deleted the spatiotemporal consistency test, but
kept the left-right check to validate matches. There-
fore, each match is performed twice. In addition, we
added an interest operator to flag points in the left
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Figure 25: A pair of mistakes, one of which is caused by a feature being out of the field of view of the other image.
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Figure 26: A mistake that passes the spatiotemporal test due to recurring errors.
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image that are unlikely to produce reliable resuits,
because they lack texture.

Flakey merges the stereo data with its sonar data,
and then plans its paths in the same way it always has.
It uses a two-dimensional, robot-centered map to keep
track of potential obstacles and landmarks.

In the future, we plan to add behaviors to Flakey so
that it can plan data-gathering maneuvers to examine
unmeasured regions or closely inspect points of special
interest. '

5 Conclusion and Future Work

In this paper we have (1) introduced a spatiotemporal
consistency check for evaluating stereo results and (2)
incorporated it into a system for integrating range data
over time. We have begun the process of characterizing
the utility of this approach and its relationship to other
similar techniques.

One observation we’ve made is that outdoor natural
scenes contain sufficient texture to support dense correla-
tion matching. For example, our matching technique lo-
cates matches for 70 to 80% of the pixels in most images,
even though we use relatively small correlation windows.
The 20 to 30% mistakes and no-data regions are caused
by such things as bland areas, repeated patterns, and
occlusions. Even though the mistakes represent a rel-
atively small fraction of the results, most tasks require
significantly more complete and more reliable data. For
example, a navigation system cannot recommend driving
over areas containing unmeasured regions or unexplained
points floating above the ground. Therefore, there is a
need for evaluation techniques to assign confidences to
individual pixel features and for higher-level sensor con-
trol strategies to reexamine no-data or questionable re-
gions.

The multiple-match consistency checking procedures
discussed in this paper provide a form of “structural fil-
tering” that we prefer over such techniques as thresh-
olding correlation values. Structural filtering techniques
are based on distance measurements for which it is rel-
atively easy to determine appropriate thresholds. We
view the spatiotemporal filtering technique as one of sev-
eral techniques from which a stereo system can be con-
structed. One benefit of applying spatiotemporal tech-
niques is that they provides a natural way to integrate
range information over time, which opens up the possi-
bility of additional temporal analysis.

In the future we plan to complete the characteriza-
tion of this approach, explore higher-level explanations
of the pixels marked invalid by the consistency checks
(e.g., produce explanations in’ terms of occlusions and
bland areas), and investigate techniques for combining
the results of multiple “binary” consistency checks to
form scenes models capable of answering such questions
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as “What are navigable areas in front of the vehicle?”
and “Where are there preliminary indications of a pos-
sible obstacle that should be examined more closely?”
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